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ON THE DISTRIBUTION 
OF A SCALED CONDITION NUMBER 

ALAN EDELMAN 

ABSTRACT. In this note, we give the exact distribution of a scaled condition 
number used by Demmel to model the probability that matrix inversion is diffi- 
cult. Specifically, consider a random matrix A and the scaled condition number 
KCD(A) = IIAlIF * IIA- 1 1. Demmel provided bounds for the condition number 
distribution when A has real or complex normally distributed elements. Here, 
we give the exact formula. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

In [4], Demmel investigates the probability that numerical analysis problems 
are difficult by unifying the common algebraic and geometric structures underly- 
ing the notion of ill-conditioning. As an application of his theory, he constructs 
a probabilistic model to examine the probability that matrix inversion is difficult. 
It is our goal in this note to work exclusively within his framework and derive 
exact distributions for the condition numbers that he considers. This condition 
number is a measure of difficulty in that the larger the value of the condition 
number, the more "difficult" matrix inversion becomes. The limitations of the 
model are discussed in [4]. We consider it a rather remarkable accident of 
mathematics that these distributions can be written down in a closed form at 
all. Although, as Demmel states, the assumption that matrices are uniformly 
distributed spherically is rather strong, the mathematics stands on its own, and 
indeed might have further applications to the "tubular neighborhoods" that he 
uses and perhaps also in multivariate statistics. 

The objects of study are a scaled version KD(A) IIAIIF * 11A'II of the 
usual condition number, and its distribution when considering random real and 
complex n by n matrices with elements distributed uniformly on the sphere 
1 = JjAjj2 = Ea;.. Because of the scale invariance of the condition number 
and special properties of the normal distribution, it is equivalent to assume that 
the random matrices are generated with independent elements from a real or 
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complex standard normal distribution. Demmel concludes that for real matrices 

C(l - l/x)n2, Z 2('2) 
x < Prob(KD(A) > x) < ( 2n2) k 

where C is a constant. For complex matrices, on the other hand, he concludes 
that 

(1.1) (1 2X- 1)2n2-2 <Prob(KD(A) X) e2n5( + n2lx)2n 2-2 

2n4X2 -2 

and that asymptotically 

Prob(KD(A) > x) = n + 1 X2 

as x - x for fixed n . 
In this note, we derive the exact probability distribution by combining exact 

distribution expressions for the smallest singular values [5, 6] of these random 
matrices with equations from [3, 8] which relate to KD . Our results are: 

Probability Densities for KD (A) 

Real n by n matrices: 

,xl n2(x2 _ n)n(n+l)/2-22Fi (n - , In + 1; n2 + n -1;-(X2 - n)) 

2]l = -(n+')r(n2 \/r 1) 

Complex n by n matrices: 

2n(n2 - 1)X1-2n2(X2 _ n)n2-2 

Here, 2F1 denotes the Gauss hypergeometric function. Since obviously 
v'n- < KD(A), these formulas are valid only for x > V+/i. 

For real matrices, the formula is cumbersome. For large x and n > 20, say, 
the formula below is quite adequate: 

Prob(KD(A) > x) z n312/x, x >? v/in, n >. 

For complex matrices the exact distribution is a simple expression: 

Prob(KD(A) > x) = 1 - (1 - nlx2)n 
2 _ 

x > v.n 

For large n, the condition numbers of real and complex matrices scale like 
n31/2. To be precise, let K' be the random variable 2KD/n3/2. Then as n -X oc, 
for real matrices, 

(1.2) Prob(K' < x) -, e-2/x-2/x2 

For complex matrices, 

(1.3) Prob(K' < x) - e-41x22 
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In fact, for large n the Demmel condition number KD of random uniformly 
distributed matrices is roughly V,'i/2 times as big as the ordinary 2-norm con- 
dition number K2. To be precise, as n -- ox, 2KD/IK2 converges almost surely 
to 1. Thus for large n, KD truly deserves to be called a scaled condition num- 
ber, and the distribution of K' is the same as the distribution of K2/fn which 
we have presented in [5, 6]. 

2. THE DISTRIBUTION OF KD (REAL CASE) 

Let A be a real random n x n matrix with independent and identically 
distributed (iid) elements from a standard normal distribution. The matrix 
W = AAT is said to be a Wishart matrix or to have the Wishart distribution. 
Our goal is to study the random quantity 

n 

KD(A) Zi/n' 
i= 1 

where Ai > ...> An > 0 are the eigenvalues of AAT . Clearly KD(A) > Vfi. 
Let fn be the probability density function (pdf) of (KD(A))2 = An/ n=1 Ai 

and let gn be the pdf of An. The distribution function for KD(A) will be 
derived from two lemmas regarding fn and gn . 

Lemma 2.1 (Davis). The pdfs fn and gn are related by 

L ((1 +w)/ ( l ) (s) = 2F (2) e s I/+gn(2s), 

where L denotes the Laplace transform. 

This lemma was proved in [3], where the more general case of j1/ n A, 
is examined. These ratios arise in the multivariate analysis of variance 
(MANOVA) as described in multivariate analysis books such as [2]. 

The density function gn is known exactly (see [5] and [6]): 

Lemma 2.2. The density of the smallest eigenvalue of a Wishart matrix is 

gn (x) =j( n 2 ) 1/2exn/2 U (n2 
- 

- 2 ) 

When a > 0 and b < 1, the Tricomi function, U(a, b, z), is the unique 
solution to Kummer's equation 

d w dw 
(2.1) Z dz2 +(bz-z)d -zaw=? 

satisfying U(a, b, 0) = F(l - b)/F(l + a - b) and U(a, b, oo) = O. 

Combining Lemmas 2.1 and 2.2, we obtain 

Theorem 2.1. The density of (KD(A))-2 is 

fn(x) = axn'/2-2(x-1 - )n(n+l)/2-2 

x 2F1 (- + 1; + 2 - 1; -(x1 - n)) 
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where a = n]F( n21 )F( L2)/Vl/7r( n(n+1) -1) and 2F1 is the Gauss (hypergeometric) 
function. 
Proof. According to [7, formula 7.522.4, p. 850],1 if b > 0, 
(2.2) L(wb 2Fi(a, a-c + 1; b; -w))(s) = F(b)sa-b U(a, c, s), 

where 2F1 is the Gauss (hypergeometric) function. 
With a = n b = n2 + n2- 1, c= -1, and d = n + 1 we have from 2'2 2 2 2 '2' 

Lemmas 2.1 and 2.2 that 

(2.3) L ((1 + w)n2/2-2f ( 12)) (s) - &esn)F(b)SabU(a, c, s). 

From (2.2) we have 

L(awbI 2F(a, d; b; -w))(s) = aF(b)sa-bU(a, c, s). 

Using familiar results concerning the Laplace transform, we then obtain 

(2.4) L(al(w - n + 1)b-i2Fi(a, d; b; -(w - n + 1)))(s) 
= a&eS -n)F(b)sa-bU(a, c, s). 

Combining (2.3) and (2.4), we obtain 

(1 +w)n/22fn (1 + ) = a(w- n + 1)b-12Fi(a, d; b; -(w - n + 1)), 

from which the theorem follows. 0 

Corollary 2.1. Let hn(x) (x > v/'i) be the density of KD(A) for real matrices. 
Then 

hn(x) = juxl-n2(x2 -)n(n+l)2-2 

F (n _ 1 n+1; n2 + -l;-(x2 
21 2212 2 / 

where ,u = 2nF(n2' )F((n/2 l/F( n(n+ ) - 1) and 2F1 is the Gauss (hypergeomet- 
ric) function. 
Proof. This follows from Theorem 2.1 using the standard change of variable 
formula for probability densities. o 
Corollary 2.2. For fixed n, as x 00, 

hn(x) -Vnx-2 

where Vn =nF((n1)F(n#)/(n21)F(n+2). For n>20, vnzn312. 
Proof. The asymptotic formula for hn follows from 15.3.4 and 15.1.20 of 
[1]. o 

3. THE DISTRIBUTION OF KD (COMPLEX CASE) 

The complex case is much easier than the real case, and the resulting formulas 
are considerably simpler. In [6], we gave a complete derivation of the exact 

'This formula is incorrect in older editions of [7]. We have verified that the formula as listed 
in our edition of [7] is indeed correct. 
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density from first principles, but here we will proceed in an analogous manner 
to the real case. 

Let A be a complex n x n matrix with independent and identically dis- 
tributed (iid) elements from a complex standard normal distribution. A com- 
plex standard normal distribution can be defined as u + vi, where u and v 
are independent standard normals. 

The matrix W = AAH is said to be a complex Wishart matrix or have the 
complex Wishart distribution. Again our goal is to study the random quantity 

n 

KD(A) = d/n, 
i=l 

where Al > > An > 0 are the eigenvalues of the complex Wishart matrix 
AAH. As in the real case, KD(A) > v/if. 

Using the same notation as in the real case, let fn be the probability density 
function (pdf) of (KD(A))-2 - 

n / A )i and let gn be the pdf of An . The 
generalization of Lemma 2.1 for the complex case can be found in [8]. 

Lemma 3.1 (Krishnaiah and Schuurmann). The pdfs fn and gn are related by 

L ((1 +w )n22f ( W 2)) (s) = F(n2)eSslf gn(s) . 

Again, we have the density function gn exactly (see [5] or [6]): 

Lemma 3.2. The density of the smallest eigenvalue of a complex Wishart matrix 
is gn(x) = ne-xn, i.e., nAmin is exponentially distributed. 

Theorem 3.1. The density of (KD(A))-2 is 

fn(x) = n(n2 - 1)(1 - nx)n22 
Proof. This formula can be derived from the two lemmas, and the integral 
formula for the gamma function. o 
Corollary 3.1. Let hn(x) (x > v/Hi) be the density of the condition number 
KD(A) for complex matrices. Then 

hn(x) = 2n(n2-1)x12n2(X2 - n)n22 

Corollary 3.2. The probability distribution of KD is given in the complex case by 

P(KCD > X) =1(1 - nIX2)n 
2 _ 

x > v/ii. 

The above result allows us to verify that indeed 

Corollary 3.3. For fixed n, as x -x oc, 

P(KD > x) n(n2 - 1)/X2. 
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